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Abstract: The ubiquitous Epstein-Barr virus (EBV) is associated with several human 
tumors, which include lymphoid and epithelial malignancies. It is known that EBV 
persistently infects the memory B cell pool of healthy individuals by activating growth and 
survival signaling pathways that can contribute to B cell lymphomagenesis.  Although the 
monoclonal proliferation of EBV-infected cells can be observed in epithelial tumors, such 
as nasopharyngeal carcinoma and EBV-associated gastric carcinoma, the precise role of 
EBV in the carcinogenic progress is not fully understood. This review features 
characteristics and current understanding of EBV-associated gastric carcinoma. EBV-
associated gastric carcinoma comprises almost 10% of all gastric carcinoma cases and 
expresses restricted EBV latent genes (Latency I). Firstly, definition, epidemiology, and 
clinical features are discussed. Then, the route of infection and carcinogenic role of viral 
genes are presented.  Of particular interest, the association with frequent genomic CpG 
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methylation and role of miRNA for carcinogenesis are topically discussed. Finally, the 
possibility of therapies targeting EBV-associated gastric carcinoma is proposed. 
 
Keywords: EBV; Carcinogenesis; EBV-associated gastric carcinoma; Epithelial; CD21; 
Methylation; miRNA 

 

1. Introduction 

Epstein-Barr virus (EBV) is a ubiquitous human herpes virus with oncogenic activity. The EBV 
genome can be detected in malignancies of both lymphoid and epithelial cell origin, such as Burkitt’s 
lymphoma (BL) and nasopharyngeal carcinoma (NPC) [1,2]. In 1990, EBV genomes were detected in 
gastric carcinomas using polymerase chain reaction [3] and in situ hybridization (ISH) for EBV-
encoded small ribonucleic acid 1 (EBER1). These findings indicated that EBV-associated gastric 
carcinomas (EBVaGC) comprise about 10% of all gastric carcinomas worldwide [4-6]. Since EBVaGC 
are monoclonal proliferations of a single cell persistently infected with EBV, EBV infection may be 
involved in the early stages of gastric carcinogenesis [7-9]. 

EBV spreads by the oral route [10].After primary infection, EBV establishes the lifelong virus 
carrier state, called latent infection, which expresses a limited set of viral genes required for viral 
episome maintenance, thereby conferring a survival advantage to the infected cell. BL, approximately 
half of the NPC, and EBVaGC belong to latency I, in which EBV nuclear antigen 1 (EBNA1), EBER1 
and 2, and BamHI-A rightward transcripts (BART) are expressed. Latency II neoplasm includes the 
remaining NPC and Hodgkin’s lymphoma (HL) and is characterized by the expression of latent 
membrane protein 1 (LMP1) in addition to latency I transcripts. Latency III neoplasms, typified by 
lymphomas observed in immunosuppressed patients, additionally expresses EBNA2, 3A, 3B, 3C, and 
LP. Three promoters (Cp, Wp, and Qp) are utilized for EBNA transcription. The Cp- or Wp-initiated 
large transcript is differentially spliced into six EBNA mRNAs as observed in latency III cells, whereas 
Qp mediates selective expression of EBNA1 in Latency I or II cells [7]. The expression of latent genes 
is under a strict epigenetic regulation through DNA methylation. Cp and Wp are hypermethylated in 
latency I [11]. 

EBVaGC is a latency I neoplasm and expresses EBNA1, EBER, BART, and sometimes (40%) latent 
membrane protein 2A (LMP2A) [9]. Since EBVaGC does not express EBNA2 and LMP1, which are 
important for B cell immortalization and transformation [2,7], preexisting abnormalities may exist in 
gastric epithelial cells [12]. Not only viral gene, but also the host cell DNA methylation has been 
frequently observed in EBVaGC [13-15]. Promoter hypermethylation of tumor-related genes is known 
to cause down-regulation of their gene expression [16]. Target gene silencing by viral micro RNAs 
(miRNAs) [17] has also been observed in EBV infected cells. Both mechanisms may influence the 
tumor progression of EBVaGC. 
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2. Definition, Epidemiology, and Clinical Features 
 
2.1. Definition 
 

Almost 10% of the gastric carcinomas throughout the world are monoclonal proliferations of EBV-
carrying tumor cells [4].A characteristic feature of EBVaGC is lymphoepithelioma-like carcinoma, 
which presents a diffuse-type histology with lymphoid infiltration. EBVaGC is defined by the presence 
of EBV in neoplastic cells. EBER1-in situ hybridization (ISH) is used to identify EBVaGC, because 
EBER1 is highly abundant (10 million copies per cell) in each infected cell. Typically, tumor cells, of 
which nuclei are positive for EBER1-ISH, are surrounded by lymphoid stroma (Figure 1). EBVaGC 
has distinct clinicopathological features, which predominantly arises in men and presents a generally 
diffuse histological type [18]. 
 

Figure 1. Lymphoepithelioma-like subtype of Epstein-Barr virus-associated gastric 
carcinomas (EBVaGC).A. Hematoxylin-Eosin Staining. B. EBV-encoded small ribonucleic 
acid-in situ hybridization (EBER1-ISH) demonstrates positive nuclei in the carcinoma cells, 
which are surrounded by infiltrating lymphocytes. 
 

 

2.2. Epidemiology 
 

Most studies did not show evident age dependence of EBVaGC frequency.Almost all studies have 
shown male predominance of EBVaGC, suggesting that risk from lifestyle or occupational factors may 
exist among males [19].An interview study in Japan showed that salty food intake and wood dust 
and/or iron filings exposure, which may induce mechanical injury to the gastric epithelia, are related to 
a higher EBVaGC risk [20]. 

In contrast to BL and NPC, which are endemic in Equatorial Africa and Southeast Asia, 
respectively, EBVaGC is a non-endemic disease distributed throughout the world [6]. However, there 
are some regional differences in the incidence of EBVaGC. The incidence of EBVaGC in all cases of 
gastric cancer is distributed from highest (16-18%) in the USA and Germany to the lowest (4.3%) in 
China [6,21,22].A Japanese study investigated incidence of EBV-positive cases in all gastric cancers in 
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several areas. The study indicated that EBVaGC prevalence was inversely related to the GC incidence 
[23]. Prognosis of EBVaGC is relatively favorable. 

  
2.3. Clinical Features 
 

The most useful modality for the diagnosis of gastric carcinoma is endoscopy. By endoscopy, 
EBVaGC appears as superficial depressed (or ulcerated) lesions in the upper part of the stomach 
(Figure 2). Tumor locates predominantly in the non-antrum part of the stomach [19]. Because gastric 
cancer related to Helicobacter pylori (Hp), a causative agent of chronic gastritis, intestinal metaplasia, 
and cancer, locates predominantly in the antrum, these pathogens have been thought to cause gastric 
cancer by independent mechanisms [19]. Gastritis related to Hp frequently starts in the antrum. 
However, Yanai et al. reported that EBVaGC are frequently located near the mucosal atrophic border, 
where mild to moderate chronic atrophic gastritis (CAG) is common [24]. They also showed frequent 
detection of both EBV and Hp at the mucosa with moderate CAG, where inflammatory cell infiltration 
is abundant, and not at the mucosa with marked CAG, where inflammatory cell infiltration is scarce 
[25]. 
 

Figure 2. Endoscopic image of an early EBVaGC in the upper gastric body. The tumor 
shows protruded shape probably because of the abundant lymphocyte infiltration. 
 

 
 

3. Route of Epithelial Infection 
 
EBV infects human B lymphocytes and epithelial cells via different entry mechanisms. In case of B 

cells, the major outer envelope glycoprotein, gp350/220, is responsible for attachment of the virus with 
high affinity to CD21 or the human complement receptor type 2 (CR2) on B cell surface [26-29]. EBV 
is subsequently internalized into the cells via endocytic pathway. Fusion with viral envelope and 
endosomal membrane of B cells is triggered by the interaction of a second envelope glycoprotein, 
gp42, with HLA class II [30], and is thereafter mediated by the core fusion complex, gH/gL/gp42 
[31,32]. 
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In contrast, the mechanism by which EBV infects human epithelial cells remains unclear. Human 
epithelial cells are CD21-negative or express CD21 at low level in some epithelial cells in culture and 
highly resistant to cell-free EBV infection [33,34].At least three models have been proposed as 
mechanisms for the EBV attachment to epithelial cells independent of CD21. First, it has been 
demonstrated that EBV virions coated with immunoglobulin A (IgA) specific to gp350/220 can bind 
efficiently to the polymeric IgA receptor [35]. Polymeric IgA is commonly present in human saliva and 
binds to the secretory component (SC) protein, which is a transmembrane protein expressing on the 
basolateral surfaces of polarized epithelial cells.A complex of EBV/IgA/SC is internalized into 
epithelial cells via endocytic pathway. This may be relevant to infection through the basolateral surface 
of an epithelial cell, which presumably resembles the physiological environment that the virus 
encounters in vivo [36]. Second, a complex of gH and gL was proposed to serve as epithelial ligands in 
the absence of CD21. EBV derived from B cells binds with high affinity to CD21-negative epithelial 
cells, but recombinant viruses lacking gH/gL lose this ability [31,32], suggesting that there is an 
epithelial cell-specific receptor for gH/gL that serves in attachment of EBV. It has been also shown that 
the direct interaction between gH/gL and the integrins αVß6 and αVß8 can provide the trigger for 
fusion of EBV and plasma membrane of epithelial cells [37]. Finally, an interaction between an EBV-
encoded membrane protein, BMRF2, and integrins on polarized epithelial cells has been proposed as a 
model for EBV attachment to the cell surface [38]. The tripeptide Arg-Gly-Asp (RGD) motif in the 
BMRF2 molecule is presented as a ligand for ß1, α5, α3, and αV integrins [39,40]. However, BMRF2 
is not required for cell-to-cell fusion [41,42] and apparently very few BMRF2 molecules exist in the 
virion [43]. It remains unclear whether the interaction of BMRF2 with integrins is primarily 
responsible for attachment and/or post-attachment events. 

Interestingly, EBV virions released from B cells are deficient in gp42 which renders them more 
efficient to infect epithelial cells, but less efficient to infect B cells [44,45]. In contrast, EBV released 
from infected epithelial cells possesses gp42 and efficiently infects B cells [44]. This change in cell 
type tropism for EBV infection suggests that EBV shuttles between epithelial cells and B cells in the 
host during infection cycle. This observation supports a model that pharyngeal epithelial cells are in 
lytic EBV infection and shed infectious EBV particles for transmission. 

The fusion of EBV envelope with the plasma membrane of epithelial cells requires a trigger gH/gL 
complex [36,45-49]. The fusion of EBV with an epithelial cell is likely triggered by a direct interaction 
between gH/gL and unknown epithelial cell surface molecules, which might be the identical proteins 
that can serve as attachment receptors in the absence of CD21 [50]. 
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Figure 3. Cell-to-cell contact-mediated EBV transmission to epithelial cells. In cell-free 
infection, EBV preferentially infects B cells using CD21 receptor. EBV also infects CD21-
negative epithelial cells as part of its normal life cycle, however much less efficiently. EBV 
transfer mediated by cell-to-cell contact with B cells increases the infection efficiency 1,000 to 
10,000-fold compared with cell-free virus infection. 
 

 
 

Several lines of evidence indicate that EBV infection into epithelial cells is mainly mediated by 
cell-to-cell contact [34,51-55]. The rate of EBV infection in epithelial cells is 103-fold higher by co-
culturing with EBV-positive B cells than by cell-free infection [34,51,55]. Moreover, most EBV 
virions are retained on cell surfaces after binding to primary B cells and transferred to epithelial cells, 
resulting in the 103 to 104-fold increase of infection compared with cell-free virus infection [53,54].All 
these studies support a model that EBV-infected B cells migrating into the epithelial stroma or 
intraepithelial space contribute to the efficient EBV transmission into epithelium via cell-to-cell 
contact (Figure 3). The detailed molecular mechanisms of cell-to-cell EBV transmission remain 
unclear. Shannon-Lowe et al. showed that EBV virions loaded on the surface of primary B cells 
facilitate the formation of a virological synapse (VS)-like intercellular conjugation between B cells and 
co-cultured epithelial cells [53,54]. The VS is a tight adhesive junction across which virus can be 
efficiently transferred from virus-infected cells to non-infected target cells without cell-cell fusion 
[56].An important role of an EBV glycoprotein, BMRF2 in the cell-to-cell spread of EBV in polarized 
oral epithelial cells has been proposed [39,40]. The mucosa of oropharyngeal and nasopharyngeal 
regions are known to be heavily filtrated by lymphocytes, suggesting that cell-free virus in the saliva 
could first bind to the surface of B cells and then efficiently transfer to pharyngeal epithelial cells 
through a cellular conjugate between B cells and epithelial cells. 

The detailed molecular mechanism by which EBV infects epithelial cells still remains unclear. 
Some key factors involved in viral attachment, membrane fusion, and cell-to-cell contact-mediated 
viral transmission, have been identified [48,49]. However, no cellular receptors for EBV infection have 
yet been identified on epithelial cells.Also very little insights have been provided for a conceptual 
understanding of viral entry mechanism into epithelial cells. Further investigations are still required. 
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4. Viral Genes and Carcinogenesis 
 
4.1. Models of EBV infection of gastric epithelial cells 

 
EBV infects both B lymphocytes and epithelial cells, since the virus is discovered in BL cells, HL 

cells, NPC cells, and EBVaGC cells. Experimental EBV infection to B cells is very efficient, since 
EBV uses high affinity receptor, CD21 for its entry [16]. However, epithelial cells are CD21-negative 
and infection of epithelial cells could not be achieved for a long time, exceptionally when CD21 
expression was overcome by gene transfer [33,57]. 

We have clearly proved direct infection of human gastric epithelial cells by EBV [50]. The infection 
was achieved by using a recombinant EBV with a selectable marker gene [58,59], but without any 
operations, such as introduction of the CD21 gene. In our study, epithelial cells were negative for 
CD21 and the infection was not blocked by anti-CD21 monoclonal antibody [50]. We have next 
showed that efficient transfer of EBV to epithelial cells by mixed culture with recombinant EBV 
producing B cells [34]. Other than experimentally EBV-infected cells, SNU-719 cell [60] and KT cell 
[61] are few cells retaining the same clonal EBV genome and EBV gene expression pattern of latency I 
as the original tumor biopsy. EBV-harboring epithelial cells are difficult to propagate in vitro and in 
animal models. 

 
4.2. Growth promoting effects of EBV 

 
The KT cell is a good in vivo model of EBVaGC and expresses high IL-1ß compared with EBV-

negative gastric tumor cells [62]. Primary cell cultures from healthy gastric mucosal biopsies were 
infected with recombinant EBV [63]. The established cells expressed Qp-driven EBNA 1, EBER, 
BART, and LMP2A, similar to EBVaGC. The EBV-positive clones showed rapid proliferation and p53 
overexpression, and exhibited anchorage independence in colony formation assay. 

Growth promotion by EBV infection was also observed in EBV-infected NU-GC-3 cells through 
secretion of insulin-like growth factor (IGF)-1 as an autocrine growth factor [64]. It has been shown 
that EBERs play an oncogenic role by inhibition of apoptosis [65,66] and IGF-1 induction [67]. The 
oncogenic role of other genes, such as BARF1 [68] and LMP2A [69] has been reported.A recent report 
showed that EBV infection affected miRNA expression [70]. While no consensus exits as to the exact 
mechanism by which EBV promotes EBVaGC, the establishment of EBVaGC cell lines and the 
development of an in vitro model represent significant progress towards this goal. 

 
5. Virus and Host Interactions at Molecular Level 
 
5.1. DNA Hypermethylation in EBV and Host Genomes 

 
A number of CpG islands in the promoter region of an tumor suppressor gene have been methylated 

in cancer cells than in normal cells [71]. Expression of many genes, such as p16 and RUNX3, is 
suppressed in stomach cancer owing to promoter methylation [72,73]. Promoter hypermethylation is 
especially frequent in EBVaGC [74-76]. Methylation of promoter region in APC, p16, MINT1, MLH1, 
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TP73, and HOXA10 [14,77,78] has been specifically observed in EBVaGC (Table 1).A large-scale 
analysis revealed that CXXC4, TIMP2, and PLXND1 are specifically methylated in EBVaGC [79]. 
Down regulation of CXXC4, a suppressor of the Wnt pathway, promotes tumor cell proliferation and 
invasiveness [80]. Down regulation of TIMP2, a suppressor of metalloproteinase, inhibits tumor cell 
metastasis [81]. Methylation of similar genes has been reported in cancers associated with hepatitis B 
or C infection [82,83], suggesting that a common mechanism may underlie the formation of infection-
associated cancers.  

 
Table 1. DNA hypermethylation in EBVaGC. 

 

 
 
However, the precise molecular mechanism of host DNA methylation during the early stage of EBV 

infection of the gastric epithelium is not fully understood. It is reported that LMP2A induces the 
phosphorylation of STAT3, which activates DNA methyltransferase 1 (DNMT1) transcription and 
causes PTEN expression loss through CpG island methylation of the PTEN promoter [69].Although 
LMP2A is expressed in substantial cases of EBVaGC [84], EBVaGC patients are usually negative for 
LMP2A antibody [85]. Constitutive overexpression of DNMT1 has been observed in EBV-infected 
gastric epithelial cells that do not express LMP2A significantly [69]. Further investigations using EBV 
mutants of LMP2A [86] may uncover its precise molecular mechanism. 

 
5.2. miRNA and Carcinogenesis 

 
miRNAs are endogenous 18 - 25 nt RNAs and play important gene-regulatory roles in eukaryotic 

cells via posttranscriptional repression of gene expression. miRNA targets 3′-untranslated region 
(UTR) elements of mRNA and mediates mRNA decay through degradation of polyA (RNA silencing: 
RNAi) [87]. Different expression patterns of miRNA from normal tissues were expected in cancer. 
Several miRNAs and non-coding RNAs have been found to have links with some types of cancer and 
are referred as “oncomirs”. This is because miRNAs have a role as oncogenes when they target tumor 
suppressor genes. On the other hand, miRNAs are tumor suppressors when they target oncogenes [88].  

A clonal EBV infection has been found in EBV-associated epithelial tumors, such as NPC and 
EBVaGC [9,89]. EBV encodes a large number of miRNAs [90]. Up to 25 pre-miRNAs are encoded in 
the BHRF1 and BART regions of the genome, which result in four mature BHRF1 miRNAs and 40 
BART miRNAs [91].A prototypic EBV strain B95-8 is known to have 11 kbp deletion in BART 
region. However, B95-8 virus can be produced in large amount and possesses prominent B cell 
transformation ability. Moreover, a recombinant virus lacking entire region of BART region was still 
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able to infect and transform B cells [92]. These findings indicate that BART transcripts are not 
required for B cell transformation and neglected the importance of BART for a long period. Cai et al. 
identified 13 BART miRNAs in the region of B95-8 deletion [91]. 

 
Table 2. EBV-derived miRNAs and their target genes. 

 

 
 

EBV-encoded BART miRNAs target the 3'-UTRs of viral genes, such as LMP1, BALF5, and 
LMP2A genes, and negatively regulate expression of these viral genes [93-95]. On the other hand, 
EBV miRNAs repress cellular proteins, which include p53 up-regulated modulator of apoptosis 
(PUMA), DICER1, and BIM [96-98] (Table 2). Preservability of the 3'-UTR domain of the target gene 
between species is a common feature of mammalian miRNA. However, since EBV preferentially 
infects humans, some EBV miRNAs characteristically target only human gene and not genes for other 
mammals. EBV miRNAs have another characteristic feature, some of which binding motifs are found 
only on EBV genome and not preserved on other viral genomes [97,99]. In order to identify EBV 
miRNA targets, a transcriptome-wide identification of miRNA binding sites has been performed 
between EBV-negative and EBV-positive cell lines [99-101]. 

Biological significance of viral miRNA in EBV-infected cells was searched using EBV 
recombinants. In these recombinants, mutations were systematically introduced in EBV’s precursor 
miRNA transcripts to prevent their subsequent processing into mature viral miRNAs. Phenotypic 
analyses of miRNA mutants revealed that the viral miRNAs contribute to EBV-associated cellular 
transformation rather than regulation of viral lytic replication [102]. 

There are two complicated stories in EBV-infected cells. One is that expression of viral latent genes 
induces cellular miRNAs. Viral LMP1 induces human miR-146a and miR-155 expression [103-
105].And excessive miR-155 expression is known to form B lymphoma [106]. Two, infection of EBV 
conversely suppresses entire host cell miRNA expression [70,107]. Since down-regulation of the 
cellular microRNA family miR-200 causes epithelial-mesenchymal transition (EMT), this 
phenomenon must be an important step in the process of malignant transformation of both EBVaGC 



Viruses 2012, 4                            
 

 

3429 

and nasopharyngeal carcinoma cells. The precise mechanism for dysregulation of host miRNA by EBV 
infection needs to be clarified. It is known that low expression level of miRNA processing enzymes, 
DICER1 and DROSHA, is well correlated with tumor progression in many cancers [108]. We have 
shown that the expression level of human DICER1 is also lower in EBV-infected cells than in non-
infected cells [97,101]. These findings suggest that progression of EBV-associated tumor is possibly 
regulated by EBV through regulation of viral and host miRNA expression. However, most of the 
studies presented in this section are performed using BL cells. Further study using EBV positive 
gastric epithelial cells is required. 
 
6. Diagnosis and Treatment of EBV-associated GC 
 
6.1. Procedure 
 

EBER1-ISH is a most sensitive method to identify EBV infection.Application of EBER1-ISH to 
gastric mucosal biopsy samples from patients who have undergone upper gastrointestinal endoscopy is 
very useful to make diagnosis of EBVaGC before treatment. Patients with EBVaGC had elevated 
serum antibodies against EBV early antigen and EBV capsid antigen. However, EBNA1 antibody titers 
did not show significant difference between patients and healthy counterparts [9].   

Yanai et al. examined 124 gastric carcinomas from 117 patients using EBER1-ISH.Among them, 
twelve tumors (9.7%) were identified as EBV associated [109].An interesting feature of EBVaGC is its 
predominance in the non-antrum part of the stomach (Figure 4A). EBVaGC appears as a superficial 
depressed- or ulcerated-lesion in the upper part of the stomach. Histology of EBVaGC is mainly 
diffuse-type carcinoma rich in lymphocyte infiltration (gastric carcinoma with lymphoid stroma). 
Endoscopic ultrasonography revealed a hypoechoic mass in the third layer, reflecting submucosal 
nodules [110].  

 
Figure 4. EBVaGC by site in the stomach.A. Distribution of EBVaGC. EBV prevalence was 
more frequent in the cardia and middle stomach than in the antrum, where over half of EBV-
negative gastric cancers were located. B. EBV involvement in remnant cancer by site. Note that 
frequency of EBV infection in the non remnant cardiac cancer was 10.5% [22]. 

 
 

 
 
 
 
 
 
 
 

A B 
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Gastric remnant cancer (gastric stump cancer) after distal gastric resection for benign disease, such 
as refractory gastric or duodenal ulcer disease or recurrent ulcer with gastric outlet obstruction, 
remains a substantial clinical concern, because the incidence of remnant cancer is still increasing 
(Figure 4B) [111].A high prevalence of EBV involvement (25 to 41.2%) in gastric remnant carcinoma 
has been reported. High cell proliferation activity in the epithelium has been reported. The reflux of 
bile and pancreatic juice is considered to cause regenerative atypia and cell proliferation in epithelial 
cells [112].Atrophic change of remnant gastritis in Billroth-II anastomoses was associated with EBV-
positive gastric remnant carcinoma with high incidence [113]. 

 
6.2. Prognosis 
 

To date there is no specific therapeutic method for EBVaGC. Since the frequency of 
undifferentiated type of cancer is high in EBVaGC, most of the tumor is surgically resected. CpG 
island methylation of the promoters of various tumor-related genes plays important roles in the 
development and progression of gastric cancer [16]. Statistical analysis showed that promoter 
hypermethylation is more frequently observed in EBVaGC than in EBV-uninfected gastric carcinoma 
[69,74-76]. Medical treatment with a demethylation agent, which induces lytic EBV infection in 
latently EBV infected cells, may lead to a lysis of cancer cells. This approach could be applied to the 
medical treatment of EBVaGC, since methylation of the tumor suppressor gene is also a key 
abnormality in EBVaGC [12,114,115]. 

Most of the previous reports did not observe any prognostic difference between EBV-positive and -
negative gastric cancer [21]. However, early EBVaGC has the low frequency of lymph node metastasis 
even in submucosal type. Partial medical treatment, such as endoscopic treatment, can be adapted to 
such a case. The authors have experienced a case of early EBVaGC with submucosal invasion, in 
which palliative endoscopic treatment was performed. Recurrence was not observed in this case for 
more than four years [116].A clinicopathological study in the Netherlands mentioned that EBVaGC 
accompanied lymph node metastasis in significantly lower frequency than EBV-negative stomach 
cancer. In the study, EBVaGC cases showed a better prognosis than negative cases [117].  
 
7. Conclusion 
 

Considerable studies suggest that EBV contributes to cell proliferation and survival, and may 
directly contribute to the development of EBVaGC through these effects. EBV affects multiple host 
proteins and pathways that normally promote apoptosis and regulate cell proliferation. However, the 
underlining molecular mechanisms of these effects are complex and certainly affecting each other.  

In another aspect, inflammation of the stomach will recruit EBV-infected B-lymphocytes in the 
vicinity of gastric epithelia and may increase the frequency of EBV infection of epithelia. Differences 
in individual inflammatory response by either genetic and/or environmental effect, such as a 
predisposing loss of ARID1A in epithelial cells before EBV infection [118] or single nucleotide 
polymorphisms of promoter region of interleukin-10 and/or tumor necrosis factor-α [119], possibly 
affect the oncogenic pathway to EBVaGC.  
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